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Preface 

This report is the seventh concerned vdth research accomplished 

in connection with Navy Contract Honr-433(00), betwoen Dunham Laboratczy, 

Yale University, and the Office of Naval Research, Department of the 

Navy. In this report is given a discussion of the solutions for a 

pair of simultaneous nonlinear differential aquations that may apply 

to phenomena cf interest. These equations are studied analyticrlly, 

and particular examples are solved with an analog computer. 

carried en and the report written by the 

undersigned. 

K, J. Cunningham 

New Haven, August 1954 
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Abstract 

A pair of simultaneous nonlinear equations 

dx/dt - (a/k^ [kx - x - fx(y)jx 

dy/dt = (a A.) Ik - y - f (x)ly 
y   x  <-y     .y J 

may represent problems of in+erest involving certain biological or 

physical phenomena. These equations, together with several special 

caees, are investigated analytically and information about their 

solutions is obtained, A variety of dif .'.'erent solutions can occur, 

dependent upon the coefficients in the equations and upon the coupling 

functions f  and f • Criteria are developed f i-uui which the properties 
x      y 

of the solutions can be predicted. Several numerical essamplea are 

solved, making use of an electronic analog computer. 

I 

I i 
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I. Simultaneous Growth Equations 

A problem which has attracted th« attention of both mathematicians 

and biologists is that of describing mat-hem* icelly the effects of 

environment upon the population of a species of annual. One phase of 

this problem involves th^ effect of competition between two different 

species. Where tne two species oJusist on a common food supply, or 

where one species is eaten by the other, or where additional effects 

exist so that the population of one species influences that of the 

other, a mathematical description of the situation must require 

simultaneous diffei-ential equations. In general, these equations are 

nonlinear and are more or less complicated depending upon the number 

of effects that are cor.?idered- 
• 

Volterra has studied in some detail the case where the competition 

equations are 

dx/dt = x - <VV(kx " V'x 

dy/dt * y • (a/k„)(k - B x)y 

Here^ t is the independent variable time, x and y are dependent 

variables representing the two populations, and k , a , B , k . a , B 
•**• «•    «"•     Jr     J"     Jr 

are real constants. Coupling between the variables comes about through 

the nonlinear product term, xy* in eao.h equation. The variables can 

bs separated in these equation? and a solution found by a process p£.rLly 

analytical and partly graphical. The nature of the solution depends 

1 

upon the coefficients in the equations. Among th-^ possibilities are that 

one species disappears leaving t.h-- other, or that oscillations occur 

in the populations. 

1, V. Volterra, La Lutte pour la Vie, (Gauthier-Villars, Paris, 1931), 
ch. I 

i 
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Somewhat more complicated equations have been investigated by 

y = (a/kj!ky^y-.fv(x)]y 

1 

y - (a/kyXky-y- Pyx)y. 

The extra terms in these equations provide a sort of damping ef.fect ;md 

insure that neither population goes to infinity. The method of analysis 

used by Volierra is no longer applicable. Again, a variety or solutions 
•m 

is possible, depending upon the coefficients. 

A still more complicated pair of equations has been suggested by 
3 

Hutchinson as 

where f (y) and f (x) are the functions coupling one variable to 
y j 

the other. These functions are generally well-behaved mathematically, 

I and it is required that f (0) *  0 and f. (0) = 0, The functions | 
: 7 I 

might be polynomials of the sort 
I 

fx(y) - pxy 
+ y^ + Kr1 

f (x) » p x + y x2 + S x3. 
y    y       y   y 

The equations of Gause and Witt contain only the first terras of these 

polynomials * 

Equations of this same general sort might arise in describing 

other typts of physical phenomena. For example, certain Kinds of 

chemical reactions progress at a rate that depends upon the amount of 

each component present in the reaction. Simultaneous equations describing 

the amount of each component are quite similar to the competition 

equations. Similarly, an electrical system can be conceived which also 

C 2, G, F. Gause and A. A. Witt, American Naturalist, 69, 596, (1935) j 
* i 

3, G. E. Hutchinson, Ecology, 28. 319= (194?) 

I! 
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would be described by the equations. The two voltages of a pair of d-c 

generators night build up in this way. if the field windings were 

suitably connected. Two field windings on each machine would be 

required, one excited by the JMchine itself and the other excited from 

a cross connection with the secom machine. 

In general, the equations apply to any situation where two effects 

tend to grow with time, but the rate of growth of each is influenced 

In some way by the other. 

• 

( 
I 

II, Mo.5t General Form of Equations 

II.1 Analysis of equations 

The naii* of piitn.0.tsn(?o,.'is ?nuations that OV.1LIJ.UU1^U iiOi.*3 zi.l'*z     Ul 

the most general form 

dx/dt = x = (°-,jK.)[}tx ~ x - fx(yj]*        (1) 

dy/dt - y = (ay/y^ - y - fyU)Jy.       (2) 

In these c••_..^tions, t is the independent variable and usually represents 

time, x and y are the two dependent variables, and a , a , k , k x  y  x y 

are real constants. Functions f.(y) and f (x) are continuous. x      y 

single-valued, well-behaved functions that can be differentiated with 

respect to their arguments. Both functions vanish for zero argument, 

f (0) = 0 and f (0) = 0. In many cases the functions take the form 

of polynomials such as 

f,c(y) - P^y 
+ r^2 (3) 

fy(x) = (3yx + yyx
2 (4) 

where (3 , B , V , y  are real constants. It is through those 

functions that coupling exists between the two dependent variables. 
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If there is no coupling between variables x and y. f (y) a 0, 
jf. • 

^ and Eq,  (1) becomes the Verhulst-Pearl equation1 

* 

x = (<yV(kx - x)x. (5) 

This is an 'ocample of a Bernoulli equation and has the exact solution 

I x " fcf1 + ^c"1 ~ *Sf X> exp(-V)]-1 (6) 
where x • x  at t •* 0, Curves for x as a function of x and for 

o 

x as a function of t are shown in Fig. 1, with several initial 

conditions. If |x |«|k. L approximately x = x exp(a t) and the 
I o |  | .£ j o    x 

solution starts off as it would for a simple growth equation having a 

constant growth factor a.. With a  positive> x always r.pproaches 

—   ~x, -_0   -o — x  c  

If x  ia negative, x pauses through infinity and become3 positive 

so as to approach a positive k . The value x = 0 is thus a point of 

unstable equilibrium, while the value x = k  is a point of stable 

equilibrium. 

With no coupling, f (x) a 0, also, and exactly the same sort of 

solution applies for the equation in y as has just been discussed for 

the equation in x. 

In the more genert1 case where coupling between the variables is 

present, it is necessary to consider the complete form of Eqs. (l) and 

(2), The nature of the possible solutions for these equations is most 

I 
easily studied by considering the single equation obtained as their 

ratio, 

i   I S" ^jt^--~t^F • (7> 

( The independent variable t has disappeared in writing this equation. 

4, A, J. Lotka, Elements of Physical Biology, (Williams and Vfilkins, 
Baltimore. 19x5). pe 6k 
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6. 

There are certain singular points for Eq. (7) corresponding to 

points of equilibrium, where both numerator and denominator vanish 

simultaneously, The values of x and y at one of these singularities 

art; designated as x  and y . The singularities can be; separated into 
s s 

fotir groups as follows. 

Gr. 1.    xs - 0,    ys «= 0 

Gr. 2.   xs = k^,   ys 0 

k s       y Gr; 3.    x„ - 0,    yc 

Gr. 4. xs = kx-fx(y), 76 " \ ~ */*) 

The first three of these singularities are reminiscent of those which 

would occur for a pair of Verhulst-Paarl equations with no coupling. 

The fourth group may contain none, or a number of singularities, 

depending upon the properties of functions f  and f . 
x      y 

The nature of solutions for Eq. (7) near each singular point can 

be explored by replacing x with (x + u) and y with (y + v), 
s s 

where u and v are small changes. This substitution gives the 

equation 

kv   + k v - y ' -2yv-yf(x)-yf'(x)u-f. (x )v 
ay

Js       y \     * s •'s       ^s y , s , ; s y     s' y    s/ J ^„M*i 
K. Jt     T  n.  u — A 

2—  ..    —  x>   /_   \   _  —   J>   t I.,   >„ 
•fc \.» „/ ' au  ^W ,-x-a  -x  -s   — s-  --s-x^"s'  ~~s~x ws'   -x-s-J 

In writing this equation, series expansions for the coupling functions 

have been used, 

f
x

(ys 
+ v) = fx(ys

) + y(^s)v 

fy(Xs • U) =fy(Xs) • fy'(Xs)u+ . • . 

with 

y(ya)  = d/dy[fx(ys)] 

fy.(xs) =d/dx[fy(xs)]. 

(3) 

5. N. Minorsky, Nonlinear Mechanics, (J. W, Edwards, Ann Arbor, 1947), 
Part I. 
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Only linear terms in u and v have been retained, At any singular 

point, certain terms vanish, 

h ' ya " fy(xs>>s 
= ° 

so that Eq. (3) becomes 

dv       (d/k M   ""f i(y  na + Ifc    — ' 
yv a<J 

du      W { [kx ^ ^s - WJ u + L-Vx' (V]V ) 
This equation is of the form 

dv     Au + !3v 

(9) 

du      Cu + i'v (10) 

where 

A = -(oy/ky)ysf7« (xs) (11) 

G = (ab/y &c " ^s " ^W] (13) 

The nature of solutions for Eq.  (9)*   -nd also of solutions near the 

singularities of Eq.   (7), depends upon the characteristic exponents 

(\,A-/>  - (1/2)f(B <• C) + Ul/2~i (15) 

where    U «• (B * C; ' + 4(^ ~ BC).    It is necessary to examine these 

exponents near eaoh of the singularities. 

Gr, 1.    xs = 0,    ys = 0 

For this singularity 

A « '"> G • a 

B * a D <= 0 
y 

(13 + 0) «> (a    + a ) x        y' 

(AD - BC) - -a a x y 

U - (B - C)2 > 0 



. 

I*" a a < 0, a saddle point exists; if a a > 0. a nodal point 
x y  ' x y 

exists, stable if both a _ and a r are negative and unstable if both 

c  and a     are positive„ The situation is summarized in the stability 

diagram of Fig. 2. 

Gr. 2. xs • k, ys • 0 

For this singularity 

A = 0 

B - (ttyAJS where Y - k - fy0O 

C " ^x  . 

(B + C) = (ayVly " «x) 

(AD - BC) - axayY/ky 

U - (B - C)2 > 0 

In this case, the quantity Y is important. It can be found 

easily from a graphical plou relating to Eq. (7). In Fig. 3 is plotted 

the curve y = k - f ^(x) upon axes of x and y. The curve is the 

locus of those values of x and y which make the bracket in the 

numerator of Eq. (7) vanish. Any curve representing a solution for 

Eq. (7) must cross this locus with horizontal slope. Thus, this curve 

is the isocline for zero slope,, dy/dx - 0, or for y •» 0 in Eq, (2), 

The ordinate for this curve, evaluated at x • k , is the quantity Y, 

and is positive in Fig. 3. 

If a a Y/k > 0, a saddle point exists; if a a Y/k < 0, a 

nodal point exists, stable if (B + C) < 0 and unstable if (B + C) "> 0. 

The situation is summarized in the stability diagram of Fig. !<,, 

C 
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f saddle 

stable 
.node 

a 
7/ 
•'unstable 

node 

%   a •.  x 

saddle    *• 

L_i_ 

Fig.  2     Stability of Gr,  1.  Eqs    (1-2) 

y - 0 
7 s ky - fy(x) 

unstable 
node 

saddle 

a Y/k 
y    y   • 

saddle 

stable 
node , 

Fig.  3      Determination of I Fig. 4     Stability of Etjs = (l-2),Gr.2 

x » k   - f t'y) x       x J 

/' 

unstable 
node .•' saddle" -._ 

\. 
.< a 

. y 
sartdle '•• stable 

node 

i 

I 

Fig.   5      Determination of X Fig.  6   Stability of ::;.:s.(l-2), Clr.3 
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Gr. 3, x - 0, 
JL 

For thia singularity 

A»«ofi(0) 
y 7 

B - ^a 
y 

C = (a /k )X where X = k - f (k ) a: x' x  xx y' 

D - 0 

(B + C) - (a//kx - ay) 

(AD - BC) - a^yX/k* 

U - (B - C)2 £ 0 

This case is analogous to the one just preceding. Here, a plot of 

the curve x • kL. *" *"x(y) 
as ?hown in Fig. 5 is useful. This curve is 

the isocline for infinite slope of a solution curve for Eq. (7), 

dy/dx • oo, or for x = 0 in Eq. (l). The abscissa for this curve, 

evaluated at y - k , is the quantity X, and. is positive in Fig. 5. 

The situation is summarized in the stability diagram of Fig. 6, 

3 

Gr. 4- x.-fcfc-fxfr,), ys - ky - fy(xs) 

The number of singularities determined by these relations depends 

upon the functions f  and f , If these functions are nonlinear, as x      ./ 

for example Eqs. (3) and (4), numerical determination of x  and y s      s 

may be a fairly tedious process, requiring the solution for the roots 

of an equation of high degree. Probably a simpler and more informative 

approach is to resort to another grs _wal construction. 

Singular points in general are located at the intersection of 

isocline curves corresponding to different slopes, i.e. to different 

values of dy/dx. Thus, if the isoclines for zero slope, y = 0 or 

y <*  k - £  (x), and the isoclines for infinite slope, x = 0 or 

I 
I 

M 
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x • k, •" ^x(y)» 
are plotted, singularities are found at their inter- 

sections. The number and location of the intersections vri.ll depend 

upon f  and f . A    y 

Quadratic functions, such as Eqs. (3) and (4), lead to parabolic 

curves for the isoclines, as in the example of Fig. 7» This figure is 

like a combination of Figs, 3 and 5» but here the functions are such 

that both X and 1    are negative. A maximum of four intersections, 

and thus four singularities, can occur with these parabolas. If the 

coefficients of Eqs, (3) and (4) are allowed to vary, the parabolic 

curves change in shape and location, and the number of singularities 

may be any integer from zero to four inclusive. More complicated forms 

of functions f  and f  might lead to even more singularities. 

It is worth noting that in Fig, 7, the horizontal axis corresponds 

to an isocline where y <= 0, and the vertical axis corresponds to an 

isocline where x = 0, The intersections of the axes with each other 

and with the parabolic curves lead to the first three singularities. 

For the singularities of the fourth group, 

A - -(yyy8y (x3) - -SM 

B = -tyky)ya - -S 

C - -(ax/kx)xg « -R 

D - -(Wx5fx. (ys) = -RN 

where 

R s a x_/k 
x s' x 

G = R/S = a k x /a k y 
x y s' y xr E 5 s v A 

M ^ fy- (xs)  = d/dx[fy(xg)] 

N5y(yg)  - d/dy[fx(ys)] 

Quantities    R    and   S    can be found from known values of   a , a, 

k .  and k     together vrith values or   x     and   y     taken from the 
x* y s s 

I 
i 
I 
I 

I 
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Fig.  7      Isoclines for Eqs.   (1-2); determination of M and N 

1/2 - (G*l/G)A 
4 

fccus 

node 

-3 

•..  saddle'-. 

-* v- 

saddle 

nodt 

:- r-f- 

focus 

C 5    / G = R/S 

1/2 - (G*l/(5)/4 

unstable node or focus, S>0 

Fig.  8      Stability of Eos.   (1-2), Gr.  4 

stable node or focus, S > 0 
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graphical construction. Quantities M and N can be found from the 

slopes of the isocline curves for y • 0 and x. = 0, as measured at 

the singularity. The isocline for y • 0 is y » k_ - f (x), which 

has the slope dy/dx • -d/cbcff (x)| « -f ' (x). TkLo slope evaluated 

at the singularity is dy/dx |,      • -f ' (x ) = -M . Similarly, 
J(x = xfl; 7      s 

the isocline for   x « 0   is   x°k   -f ,(y)    with the slope 

dy/dx = (dx/dyf1 - (~d/dy[fx(yy} j~X « (ff^Cy)]"1-    This <&°I** 
evaluated at the singularity is    dy/dx],, =   -f ' (yj|~*    = -l/N. 

-Ky - ys) 
l- x 8J 

Th»»j M and N can be determined from direct measurement of the 

slopes of the curves, or by numerical substitution in the dsidvalives 

of the isocline curves. M = f '(x ) and N = f '(y ). '     y  s' x ws' 

Important combinations of the coefficients are the folio,ring. 

(B + C) « -(R + S) » -S(G + 1) 

(AD - BC) - BS(KN - 1) = S2G(M - 1) 

U - (ft - S)2 + 4RSMN - 4S2G[(G • l/G)/4 - 1/2 + lffl\ 

The following; solutions may exist, 

a. Saddle 

G(MN - 1) > 0 

b. Node 

Both   G(MN - 1)   CO 

and     G((G + l/G)/4 - l/2 + Ml7]>0 

Stable if    S(G + 1) > 0 

Unstable if   S(G + 1) < 0 

c. Focus 

G[(G + l/G)/4 -V2 + MN)< 0 

Stable if S(G + 1) > 0 

Unstable if S(G + 1) < 0 

The situation is summarized in the stability diagram of Fig, 8, 
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II.2 Numerical examples from computer 

In order to check these conclusions concerning the solutions for 

Eqs. (l) and (2) a particular pair of equations was ctudied with an 

electronic analog computer. The equations used were Eqa, (1) and (2) 

with the quadratic forms of Eqs, (3) and (4)« These quadratics are the 

most complicated functions that can be handled with the available 

computer. The connections for the computer are shown in Fig, 9. The 

numerical values for the coefficients of the equations were 

a = 1 
y 

k - h 
7 

P » 1 
y 

,. _ •> /, 
'j ~ ** * 

These coefficients yield parabolic isoclines that intersect at four 

points, one in each quadrant, and thus give a total of seven singularities. 

The solution curves for the equations, as  plotted directly with 

the analog computer, are shown in Fig. 10, 11, and 12, for which 

a * +1, -1, and -l/?.,  respectively. The isoclines for y = 0 and 

x = 0 are shown in Fig, 10, These same isoclines apply also to 

Figs, 11 and 12, since a change in a  does not change the isocline 
X 

curves. Various initial values of x and y were used in each case, 

and the resulting solution curves are shown. The direction of increasing 

time is indicated by the arrowheads on these curves. 

Important numerical data applying to the seven singularities for 

each of the three values of a  are given in Table I» These data 

: 

a 
X 

varied 

K - 3 

K = 1/2 

yx = V6 

used with the stability diagrams of Figs, 2, 4, 6, and 3 allow the 

f  I 
prediction of the kinds of solutions that apply near each singularity, 

i • 

The predictions are listed in Table I, The data for the Gr, 4 singu- 

larities are plotted in Fig, 13, which is similar to Fig. 8, 
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f 
Table I 

Location and Types of Singularities for Examples 

x = (a^Ax^x " x " ^x7 " V2)x 

y - (<y\) (ky - y - Py* - vyx2)y 

a    listed bel 
X 

ow a    • 1 
y 

kx = 3 Sc   - 4 
y 

6X = V2 h--1 

1/6 1/4 

point 

l.a 
2,a 
3.a 
l.-.l-.l 
4. 2. a 
4.3. a 
4.4. a 

l.b 
2.b 
3.b 
4.1.b 
4.2.b 
4.3.b 
4.4.b 

l.c 
2.c 
3.c 
4.1.c 
4.2.c 
4.3oC 
4.4.0 

1 
3 
1 
] 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 

-3/2 
-3/2 
-1/2 
-1/2 
-1/2 
-1/2 
-1/2 

0 
3 
0 
1.60 
3.32 

-3.06 
-9.86 

0 
3 
0 
1.60 
3.32 

-3.06 
-9.86 

0 
3 
0 
1,60 
3.32 

-3.06 
-9.36 

X 

0 
0 
4 
1.76 

-2.08 
4,72 

-10.4 

0 
0 
4 
1.76 

-2.08 
4.72 

-10.4 

0 
0 
4 
1.76 

-2.08 
4.72 

-10.4 

-1.67 

-1.67 

-1.6? 

Y « N    j   if* 
- -4 

ft    i 
J 

S G     |type 

-j — 

1 'inst node 
-1.25 1 

! 
st node 
st node 

1.80 1.09 1.96 .531    .44 1.2.1 saddle 
2.16 -.19 -.41 l.ilj -.52' -2.14 saddle 
-.53 2.07 -1.10 -1,02!   1.15 

-3.29l-2.6l 

> / saddle 
-3.93 -2.97 11.7 1.26 saddle 

i 

i ! 
I saddle 

-1.25 1 1 !saddle 
| 

1 saddle 
1.80   1.091   1.96 -.53 .44 -1.21 unst focus 
2.16|  -.19 -.41 -1.11 -.52 2.14 unst focus 
-.53 2.07 -1.10 1.02 1.18 .36 st focus 

-3.93 -2.97 11.7 3.29 -2.61 -1.26 st focus 

,saddle 
-1.25 i saddle 

saddle 
1.80 1.09 1.96 -.26 .44 -,60> st focus 
2.16 -.19 -.41 -.55 -.52 1.07 UTSt fOCUS 

-.53 2.07 -1.10 .51 1.18 .43 t:t Tocus 
-3.93 -2.97 

!     ! 

11.7 1.6/, -2.61 -.63 UTSt fOCUS 

I 

.* i 

\ 
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*      stable,    3 >  0 
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Fig. 13  Stability of Gr. 4 for examples 
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The typos of solutions predicted in this way are the game as 

those found with the computer, 

11,3 Sketch of solution curves 

j.t is possible to sketch the general shapes of the solution curvee 

without having recourse to a computer. This can be done from a 

knowledge of the location and nature of the singularities, of the 

isocline curves for y = 0 and x • 0, and of the asymptotes for 

solution curves near a node or a saddle. Information relating to the 

singularities and the isoclines has been given above. The asymptotes 

are considered here. 

It can be 3hown that the solution curves near the singularity 

corresponding to a node or a saddle approach a definite slope as time 

approaches either plus or minus infinity. '  As tine approaches pins 

infinity, the slope is 

dy/dx~l    - a. - k/(k,  - B) - U, - C)/D. (16) 

As  time approaches minus infinity, the slope is 

dy/dx]     - m2 - A/(\ - B) - (\ - C)D. (17) 
-'t-^ -co 

In these equations, A, B, C, D are the coefficients from Sq, (10), 

\,  is the more positive characteristic exponent and \„ is the less 

positive characteristic exponent, as .found from Eq, (15), 

As an example, a sketch of the solution curves corresponding to 

the case of Fig, 10 is shown in Fig, 1A. Isocline curves for y = 0 

and x = 0 are plotted frcrfl the equations 

2 
y = 0:    y = k - B x -yxj    y - 0 

«/       «) v 

-k  = 0:    x - kx - p^ - r^v
2;    x = 0 

6, A. A. Andronow and C. E, Chaikin, Theory of Oscillations, (Princeton 
U41ivwwity Prcc?, P~w«ton. 1949), oh. V, 

7, B. G„ Farley, Proc. IBB, 40, 1497, (1952) 
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Their intersections locate the seven singularities, the natures of 

which have been predicted in Table I. 

The slope of a solution curve must change algebraic sign whenever 

it crosses one of the isoclines, y • 0 or x -  0, Thus, with the 

knowledge that the origin is an unstable node, so that the solution 

curves near the origin in the first quadrant must have positive slope, 

the signs of the slopes of the solution curves in each region can be 

assigned, as shown. Because the axes are also particular isoclines, a 

solution curve can never cross either axis, and must regain within the 

quadrant in which it starts. 

The values for the slopes of the asymptotes m- and nv, are 

i 
[ 

j        : 

i 
i 

1 i 
. 

j   c 

given in Table II. The equality of a  and a  in this example 
x      y 

causes m, and iru for the node at the origin to be indeterminate. 

The asymptotes are plotted for each singularity in Fig. 14. 

The asymptotes are also separatrix curves near a singularity. 

Thus, the asymptote nu near Singularity 4.1 separates those solution 

curves that tend toward Singularity 2 from those that tend toward 

Singularity 3. 

k  number of solution curves are sketched in Fig. 14, making use of 

the information collected there. These solution curves represei.1-. quite 

accurately the true solutions, as found with the computer and shown in 

Fig. 10. 

A solution curve near a focal point spirals about that point and 

approaches it from no definite direction. Thus, there are no asymptotes 

associated with a focal point, and this aid to sketching solution curves 

is not available. This situation applies near the focal points of the 

examples shown in Figs. 11 and 12. 
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Asymptotic Slopes for Example 
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>    I 

C 

singular 
Doint 

l.a 
2.a 
3.a 

4.l.a 
4.2.a 
4.3-a 
4.4.a 

A 

0 
0 

-1 

-.79 
1,12 

.63 
-10,3 

-.31 
-1 

-.44 
.52 

-1,18 
2.61 

-h- 
_T 

"•5o 

-.53 
-1.11 

1.02 
3.29 

0 
-.5 
0 

-.58 
.21 

2.12 
-9,78 

1 
-.31 
-.56 

.19 

.65 
1.51 

13.0 

K 

1 
-1 
-1 

_1       i £ 

-1.24 
-1.67 
-7.0 

m. 

-1.38 
-2,25 

3,5 
.23 

-.99 

"2 

0 

1.08 
-.63 

-1.27 
1.05 
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Fig. 14 Sketched solution curves, example of Fig. 10 
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Ill, Special Case with no Squared Terms 

The form used in writing Eqs, (l) and (2) is convenient in that the 

parameters it  and k  represent the ultimate values of x and y 

when there i3 no coupling between the variables. This form is not well 

2      2 adapted to apply to the case in which the terms in x  and y  are 

missing on the right sides of the equations. It is simpler to consider 

this latter case by itself, rather than to alisapt a modification of 

the preceding analysis to include it. 

The equations with no squared terms are 

^WLky"Vx)> (19) 

where, again, f (0) • 0, f (0) = 0, and these functions can bs x j 

differentiated. The ratio of these two equations is 

As before, near a singularity, x is replaced by (x + u) and y by s 

(ys  
f v),    giving 

* „ (v iv) i LVV' usil
u: Ov: w» 

du   <«vV {liSc - fx
(^]u + !:xsfx' <*•>>} 

where f «(xg) => d/dxjf (xa)1 and fx'(yB) - <Vdy ffx(ys)], and only 

linear terms are retained. The coefficients are 

A = -(a/k )y f '(x ) (22) 
5 y s y  s' 

B-wOv-V^Q (23) 
c
 " C-^) [kx - fx(y8>] (20 

D=-(ax/kJxsy(ys). (25) 

There are only two groups of singularities. 

(20) 

(21) 
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Gr. 1.    x_ * 0, yo • 0 
S                      5 

For this singularity 

A = 0 C»ax 

B • a D = 0 
y 

The stability diagram is shown in Fig, 15* 

Gr. 2. fx(ys) = kx, fy(xs) = ky 

For this singularity 

A =» -(a/k )y f »(x )    C =• 0 
7 y s y o 

B = O ^--^Ax)xsy(ys) 
Quantities A and D must be calculated t'rom the equations. The 

stability diagram is shown in Fig. 16S 

An example of this special case is that for which 

fx(y) = *U 
+ yj- (3) 

the same forms used previously. If the quantities y k./$ and 
XX X 

.2 
y k/p     are both positi/e, there are four singularities in Gr» 2j yry 
one occurring in each of the four quadrantse Furthermore, the algebraic 

signs of x  and f l(x._)    are the same, as are the signs of y  and 

f ' (y )• With these conditions, the sign of product AD is the same 

as that of product a a . Typical solution curves are as shown in x y 

Fig. 17. With other relations of the parameters in the equations, the 

solutions may be different, of course. 

i If in Eqs. (3) and (4), both y' » 0 and y • 0, the original 
I y 
] equations reduce to 

! j ^-^y&c-pJ* (26) 

i    (" * = Wl-V pyx]y# (27) 

! 
; 
: 1 

i 
I 
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saddle 

vortex 

saddle 

D 

saddle 

A 

vortex 

Fig. 15  Stability of Sqs. (lO-l?),Gr.l Fig. 16  Stability of 
Eqs. (15-19), Gr.2 

~f  
y «• 0 

h--\ x = 0 

O r 
y = 0 

!  x = 0 
_ _<h  

y - 0 
x « 0 

i 

*- - 
H» 

-<>- 
y = 0 

x 

= 0 

i 

l   x = 0 
- -$•  

a > a > 0 
x y 

a > O > R 
x   y 

I 

Fig. 17  Solution curves for das. (18-19) 
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Gr. 1. x    - 0, 
8            ' 

ye«0 

A » 0 

B « a 

C • a 
X 

D = 0 
y 

The stability diagram is shown in Fig. 18. 

! Gr, 2.    x3 « kx>    ys = 0 

ft. » 0 C • -a, K 
X 

B - (yyDy- yy]    D--axy(o) 
It is necessary to calculate the value cf D from the equation. The 

stability diagram is shown in Fig. 19. 

rfSt) • 

These equations are those studied by Volterra. Only two singularities 

«• exist, one at the origin o.nd the other at the point x = k/p, 

y
s - v^x- 

IV, Special Case with one Squared Term 

A special case, intermediate in complexity between the most 

general case considered first, and thai, ,)u:>t discussed, is the following, 

x - (VV&x " x " fx(y)]x (28) 

*- vv[vv#- (29) 

i 

2 2 The x  term is present in the firtt equation but there is no y 

term in the second equation. 

The coefficients applying near a singularity aro 

A => -(a A )yf ' (x ) (30) y   y Js y     s' 
B
-vvCvyv] w        J 

C " <VV[kx - ^s - W] (32> 

There are three groups of singularities. 

i   I 
i 

i 
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Fig. 18 Stability of Eqs (28-29),Gr.l   Fig. 19 Stability of Eqs.(28-29),Gr.2 
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i  slope - -l/N 

N». 

'x= 0 

A 
0 

y • 0      x - 0 

Fig.  20    Isoclines for Erjs.   (23-29) 

JMN 

stable focus cr node for R> 0 

Fig. 21  Stability of Eqs.(20-29), C-r. 3 
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Gr. 3.    x    - k   - f (y ),    f (x ) = k s       x xVJs yx  s'        y 

t.rK ere 

A =-(ayky)ysfy'(xst) -~SM 

B = 0 

C   =  -WXB   "   ^ 

R = vA    G"R/s 

S = a^yk 

M 

s'   y 

f 'U ) y     s' 
N  =  f   «(y  ) 

X   WS 

The isoclines for   y = 0    in this case are   y = 0   and    f (x ) = k , 
y   B      y 

and for x • 0 are x = 0 and x = k - f (y), These isoclines are 

plotted in Fig, 20, where f (y) has been chosen to give a parabolic 

cnrve and f (x) has been chosen to give a pair of vertical linos. 

Four singularities belonging to Grs 3 exist. Quantity N can be found 

from the slope of the isocline for x = 0 at the singular point, as 

was described in discussing the r.;ost general case. Quantity M must 

be calculated from its defining equation. 

The stability diagram for Gr. 3 is shown in Fig, 21. 

V. Degenerate Cases 

One degenerate case is that described by the equations 

x * (Vkx)(kx~ X~ y)x (34) 

y - ky/kyXky ~ 7 - x)y. (35) 

These equations are or the most general type, but the coefficients are 

particularly simple. The isoclines for y = 0 and x ~ 0, other than 

the two axes, are straight lines parallel to one another, so that there 

are no singularities in Gr. 4. If a > 0,, a > 0, and k > k "> 0, 

the only stable singularity is that at x • k , y = 0, and the 

solution curves are as shown in Fig, 22. 

i 

! 
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x = 0 

Fig.  22   Solution curves for Sqs.(34-35) 
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Fig.   23    Solution curves for Bqs. (34-35), a =»cr =a„ k -k «k x   y x   y 
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A second degenerate case occurs if a • a = a and k = k • k & x  y x   y 

in Eqs, (34) and (35). This is the only combination of parametsrs in 

the general equations for which [k - x - f (y)j a Ik - y - £  (xj1 ,, sc 

that dy/dx • y/x. If a  >0, the origin is an unstable node. An 

f 

At thi« point- the slope of the parabola is dy/dx = -l/p.. If p 
.A. X 

varies, the parabola moves as shewn in Pig. 24, but its shape does not 

change. The shape is determined by y ., and the effect of changes 

in y  is shown in Fig. 25. The dotted line in each of these figures 

is the locus of the vertex of the parabola as it moves. 

| One type of solution that is of particular interest is that which 
I 

is oscillatory in nature. The simplest pair of equations that gives 

oscillations is the following 
{ 

infinity of stable points are located along the line y =• k - x, and 

the solution curves are shown in Fig. 23. 

VI. General Effects of Parameters 

Some comments can be made about the effects of the oarameters that 

appear in the general equations, Eqs. (1) and (2). The coefficients 

a," and a  are the basic quantities in determining the growth rates. x    y 

Large positive values of these quantities tend to produce rapid growth. 

Quantities k  and k  determine the final values of x and y 
X      y 

when a      and a  are positive and there is no coupling between x 
y 

and y. 

The functions f (y) and f (x) determine the shape of isocline 

curves for x • 0 and y - 0, respectively, If these functions are 

those of Eqs. (3) and (4), the isoclines are parabolic in shape. The 

parabola for x • 0 always passes through the point x = k , y « 0= 

' 

1 
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Fig.  24    Parabola  "or x = 0, p. varies 
A. 

\ locus of vertex 
:: -  k - p y/2 
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Fig. 25 Parabola for ;,: - 0, y    varies 
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i 
-d x u - (b x + 2c x y )v (4i>' x s    x R    x s^a' v  ' 

| v •» by u (46) y4 s 

34. 

x - (ax - tyr)x (36) 

y - -(a - b x)y. (37) | y  y I 
These are examples of Eqs, (16) and (19), where u • a , a • "\» 

a-y/*^ " \>    ZJ\ " ~by» 
f
x^y) " y> 

f
yW = x» A singularity exists 

at x„ » a /b = k , y -  a„/b__, " k , For small changes near this s   y   y   y* * s   yf.   x  x 

singularity, the following equations apply 

u - -(a^^/b^v (38) 

v = (axby/bx)u '    (39) 

to that 

u + a c    u - 0. (40) x y 

The solution for this equation is a periodic oscillation having the 

1 '2 angular frequency u) = (a a ) ' . In terffi3 of the coefficients used 
* y 

originally, a  and a  determine the frequency of oscillation while 

k  and k   locate the mean values of x and y about which oscil- x      y 

lation take3 place. 

Only linear terms appear in the functions f      and f  in Eqs. (36) 

and (37). If additional terms are introduced, a more complicated solu- 

tion results. A simple example illustrating the effecos has extra 

terms in only one of the two equations, 

x = (ax - b^y - c,,y - dxx)x (41) 

y = -(ay- byx)y. (42) 

The singularity about which oscillation may occur is located at x , y , s  s 

given by 

; a - bjr - cy * - d x =0 (43) 
! X    X^S    X's     X B 
• 

a -bx «0:   x » a /b , (44) ! y  y s   '   s   y y VHW 

For small changes near this singularity 

1 
!  I 
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35, 

so that 

{' U * Vs* * ay(ax + V.* " dxxs)u * ° •        U7) 

Th© term d x  in Eqs (/J.) introduces damping, while both this term 

and the term cv'~x change the location of the singularity and modify 

the frequency of oscillation. 

In general, quadratic terms in functions f  and f , as in 
x     y 

— - 

. 
Eqs, (3) and (4), lead to a modification of the frequency of oscil- 

lation, to a change in the location of the singularity, and also, 

2      2 
perhaps, to additional sing'.iiarities. So long as the terms x  and y 

are missing, as in Eqs, (1C) and (19), coefficients D and C are 

identically zero near the singularity where oscillation occurs. Thus, 

there can be no damping and the oscillation remains periodic. 

In the more general case of Eqs. (l) and (2), oscillation may 

occur also, as was true in Figs. 11 and 12, However, the presence of 

the terms x  and y  introduces damping, the algebraic sign of which 

depends upon the signs and magnitudes of tsims in tht equations. In j 

general, quantity (B + C) is not zero, and the oscillation either 

builds up or decays. With a particular adjustment, oi coefficients, it 

is possible to make (B + C) • 0, in which case a periodic solution 

would :xist, Any small changes in coefficients would destroy this 

periodicity, however. The amplitude of the periodic solution would 

depend upon initial conditions. 

It does not appear theit a limit cycle, representing a periodic 

solution with amplitude deterriined solely by the equations, can exist, 

A limit cycle might occur about an unstable focal point if a suitable 

positive damping effect came into play as the amplitude of the oscil- 

lation increased. In all the examples that have been studied, an 
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unstable focal point always leads to a solution that ultimately runs 

g+ away, as m Mg. J.J.. 

All of the preceding discussion has been con', vnnd with the 

function of x have been obtained with time as a parameter, but a 

scale of time along these curves is not available. In general, it 

appears to be quite difficult to find a solution for x, say, as a 

function of time. Such a solution would require that y bo eliminated 

from the two equations, leaving a single eqxiation in x and t* This 

single equation would be of second order and would contain a number of 

nonlinear terms. In all but very simple cases such as Eqs» (36-3?) 

methods appears to be a hopeless task. 

solution of Eqs. (l) and (2) in which only the relation between variables 

x and y at given instants in tiro is considered. Curves of y as a 
I 

and (41-42), the solution of this equation by conventional analytical 

i 



Armed Services Technical Information flgenc 
Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED 
YOUR PURPOSE so that it may be made available to other requesters.   Your cooperation 
will be appreciated. 

y 
! 

5 

I 

' 

NOTICE:    WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA 
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATEE' 
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS 
NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE 
GOVERNMENT MAY HAVE FORMULATED. FURNISHED, OR IN ANY WAY SUPPLIED THE 
SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY 
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER 
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE 
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO, 

Reproduced    by 

DOCUMENT SERVICE CENTER 
KNCTT BUILDING, DAYTON, 2, OHIO 

1 

i 1 

i ' 

Hi 
i 
•   • 

i 
i 

|! 

. 


	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048

